
ATTACKING SIGNED BINARIES

Marco Slaviero, Jaco Kroon, Martin S Olivier

ICSA Research Group

Department of Computer Science
University of Pretoria

Pretoria
0002

{mslaviero,jkroon,molivier}@cs.up.ac.za

ABSTRACT

The digital verification of binaries at the kernel level has been proposed as
a method to prevent trojaned programs and unauthorised execution. How-
ever, the nature of attacks which various signed binary schemes seek to pre-
vent vary quite considerably. Further, unrealistic assumptions are often made
as to the security of the environment in which the verification takes place.

In this paper, the authors explore one such kernel-level verification tool,
DigSig, and show how the security assumptions that DigSig makes are too
broad. Various attacks which succeed given a reduced set of assumptions are
then demonstrated. A number of recommendations are made, which alleviate
most attacks described without requiring a vastly more complex system.

KEY WORDS

digital signature, digsig, pre-execution validation, run-time verification,

1 INTRODUCTION

Attacks on network-connected machines have grown as the total number of
network links has increased. The nature of attacks vary considerably, but in
a large proportion of these attacks the attacker attempts, at some stage, to
execute code on the victim machine.

In addition, the type of code executed can also vary. An attacker may
inject code into an already running process, or existing programs might be
executed, or new programs compiled and then executed. Each action changes
the state of the victim machine.

Separate from these malicious concerns is the responsibility of a system

administrator to safeguard the smooth running of the systems under her con-
trol. To this end, the administrator would like to ensure that any unknown
programs are not run by the legitimate users of the system.

A solution to prevent the use of malicious and/or unknown programs
can be found by verifying a set of programs, and then allowing only those
programs to be executed1. To protect the integrity of the ‘safe’ programs,
each is digitally signed in some manner. When the programs are executed,
a check is performed by the operating system to verify the signature. If
the signature is good, the process is started, otherwise it is not allowed to
execute.

A number of schemes and ideas have been proposed which implement
signed binaries [2, 3, 4], plus a few abandoned efforts. In this paper the
authors will examine one framework, DigSig [5], and show how a very specific
set of security criteria must be satisfied before the signed binary strategy is
effective, and can be reasonably trusted. Where appropriate, similarities and
differences between other signed binary solutions are highlited.

The remainder of the paper is as follows: Section 2 covers the factual
background necessary to understand DigSig’s operation, as well as the as-
sumptions which provide the foundations for binary signing. In Section 3
we look at various methods with which signed binaries can be compromised.
The lessons learnt from this investigation may be found in Section 4, along
with suggestions for improving security. Finally, the paper is concluded in
Section 5.

2 BACKGROUND AND ASSUMPTIONS

The need for binary protection emanates from the desire to have multiple
layers through which attackers must break, in order to compromise machines.
However, there is no common viewpoint as to what attacks this particular
layer should protect against, and what features are required. The operating
environment in which the attacker is assumed to work varies amongst the
different signed binary solutions, as will be seen.

Three proposals are briefly described here, but a more extensive exami-
nation of these and other signed binary schemes may be found in [4].

1. DigSig provides signed ELF [6] objects under Linux. It supports sig-
nature caching and revocation [2].

1Of course, such an approach does not prevent against code insertion attacks against
existing processes. Such protection may be found in the grsecurity project [1].

2. WLF [7] supports multiple executable formats, however its support
for libraries is limited to those libraries loaded at commencement of
execution. Specifically, libraries loaded via the dlopen(3) call are not
checked [3].

3. Motara has proposed a number of strategies which include third-party
signing, separating signatures from the binary and noted the usefulness
of signed binaries in digital forensics [4]. We assign the moniker IKCVE
to his work, but that is our own term and not to be used outside of
this paper without his blessing.

DigSig is perhaps the most active signed binary initiative [4]. It consists
of a Linux kernel module which is loaded with a public key. Executables and
libraries in the ELF format are signed with the bsign tool [8] in userspace,
by means of a private key. The signatures are RSA-style signatures of the
text and data segments of the binaries.

When the binary is loaded, the kernel hashes the text and data segments
of the binary, and compares the hash to the decrypted signature. If they
match, execution proceeds, otherwise it fails. DigSig also contains a facility
for revoking old or insecure binaries.

There are two basic invalid code executions which DigSig (and all signed
binary mechanisms) seeks to prevent. The first is that of replaced or trojaned
binaries, and the second are unauthorised user programs. The administrator
will therefore sign all binaries needed for smooth operation. Under most
Linux distributions, binaries are owned by the root user. Thus in order to
replace a binary, an attacker needs to either elevate his privileges to the root
account somehow, or execute some other attack2. No special permissions are
normally required by users to execute their own programs (such programs
might be compiled on the same machine, or simply transferred from another
location).

The assumptions imposed by the signed binary schemes differs quite con-
siderably. For example, DigSig assumes that the private key used to sign the
binaries remains secret, that the public key is not tampered with, and that
the root account and the kernel itself remain uncompromised. The designers
of WLF presuppose that the kernel is always trusted, which implies that the
kernel boots securely, that kernel modules are unsupported and that kernel
memory cannot be written to. Finally, IKCVE allows for the case whereby an
attacker gains administrator access (in Unix terms, ‘gets root’) but assumes
that compromising the running kernel requires a reboot.

2These ‘other’ attacks would most likely include physical access to the machine.

There is also an implicit assumption that the system remains secure, given
the previous assumptions. However this precludes the use of standard tools
to circumvent the systems.

Given the wide range of assumptions, it is difficult to discern exactly what
malicious attacks integrity verifiers are capable of preventing. Since DigSig
in particular assumes that the administrator account is not compromised,
then it is impossible for an attacker to replace system binaries which are
owned by the administrator, so this attack is not prevented.

Others, such as WLF assume that the attacker may gain administrative
privileges but cannot tamper with the kernel. Such assumptions are more
realistic than an uncompromised root account.

If the goal is to only prevent unauthorised user programs, then simpler
measures exist. For example, the /home directory could be mounted with
the noexec option, which prevents any binaries in the user’s home directory
from being executed, without the overhead of extra checks.

3 ATTACK VECTORS

In the attack scenarios, the root account is used. The reason for this is that
the authors believe the requirement that root remains ‘safe’ is unreasonable.
Once an attacker has access to the machine via a normal user account, el-
evating privileges to root is often a matter of time3. The attacks can be
divided into four categories:

1. Attacking the kernel

2. Attacking the integrity verifier

3. Attacking the system

4. Combined attacks

In this examination, the authors installed DigSig on a Gentoo Linux ma-
chine running kernel 2.6.11 with DigSig version 1.4.1 and bsign version 0.4.5.
The installation of DigSig and bsign occurred as per their respective docu-
mentation. Public/private keypairs were created with gpg, and all system
binaries were signed.

We then proceeded with the above-mentioned attacks.

3The length of time will vary, across different environments.

3.1 Attacking the kernel

The simplest attack, given root, is to simply unload the kernel module:

rmmod digsig verif

This attack is possible since DigSig makes no attempt to prevent unload-
ing.

A possible solution might be to simply not sign the rmmod program, how-
ever this falls short of prevention. A 22-byte shell code was produced that
executes the system call which unloads the DigSig module. Such code could
be injected into whatever vulnerability exists on the target machine. Clearly,
the DigSig module needs to protect itself against unloading.

If kernel memory is writable (via a /dev/kmem type mechanism) then a
number of attacks become possible. The internal DigSig calls could be mod-
ified to simply accept all binaries as successfully verified. Another approach
might be to overwrite the public key held in kernel memory. In doing so, the
attacker would sign her own binaries with her private key, and substitute the
legitimate public key with that of the attacker. If the administrator tried
to replace the trojaned programs with the correct programs, they would not
execute since the attacker had not signed them.

A proof-of-concept was constructed whereby the small piece of kernel
memory holding the public key structure was overwritten with random data.
This caused the DigSig module to fail all verifications since its public key
was corrupted, and the system was immediately unusable because no new
processes could be executed. The next step in developing a more useful
attack tool would entail supporting replacement of the public key, but the
current denial-of-service is highly effective in using the system to thwart
itself.

It might be argued that /dev/kmem attack tools would never be signed by
the administrator, and thus could never be run in the first place. However,
it will be shown later how arbitrary programs can be run and therefore the
attacker could compile and execute any program, including her attack tool.

Additionally, it should be pointed out that writing to kernel memory can
also be accomplished by loading a kernel module, and so malicious modules
must be protected against.

3.2 Attacking the integrity verifier

If it is taken for granted that kernel memory cannot be touched, either be-
cause /dev/kmem writing or module loading is banned, weaknesses still exist
in DigSig which can be exploited. Specifically, DigSig caches signatures so as

Step Action

1 Edit smb.conf, add new share point //DISJOINT/vuln
to point to /digsig, restart Samba.

2 # mount //DISJOINT/vuln /mnt/programs

3 # cp /bin/ps /mnt/programs

4 # /mnt/programs/ps

5 # cp /tmp/trojan /digsig/ps

6 # /mnt/programs/ps

Table 1: Circumventing DigSig with Samba

to boost performance. These cached signatures are invalidated upon write
operations to the file for which a signature is cached.

The cache invalidation scheme does not function correctly for networked
file systems, as noted in the DigSig documentation. In particular, the Net-
work File System (NFS) is considered insecure and therefore no signatures
are cached for binaries which reside on NFS mounts. The rationale is clear;
cached signatures are invalidated only on write operations to their respective
files. However any particular file which sits on an NFS mount is also acces-
sible from its host file system. Writes from the host file system cannot be
detected by the machine accessing the file via NFS, so the file can be changed
without the cached signature being removed.

DigSig explicitly does not cache signatures for files on NFS mounts, but a
number of other network file systems exist which DigSig fails to recognise as
insecure. The authors chose to use Samba [9], which provides file and print
sharing over TCP/IP networks. It is available on most Linux distributions
and many administrators make use of it, so the chances that the Samba
binaries are present and signed on the target remain high. A number of other
network file systems which DigSig does not check for also exist4. The steps
which can be followed to trick DigSig into running an arbitrary program are
given in Table 1, which describes how a machine with the name DISJOINT
was compromised.

When the legitimate binary, ps, is executed in step 4, its signature is
cached. Step 5 involves replacing the legitimate binary with an arbitrary
trojan of the same name. In the final step, execution of the trojan via the
Samba mount is allowed because of the cached signature. Note that no
limitation is placed on the location of the file system mounted by Samba.
It could conceivably sit on another machine altogether. Alternatively, the

4The interested reader is directed to the Linux kernel source for more file systems which
function over the network [10].

attacker could work with an already mounted Samba share.
A second attack against DigSig’s caching mechanism may be possible

using removable media, however experiments in this direction were not suc-
cessful. The authors theorise the attack as follows: copy a legitimate binary
onto some form of removable media which supports manual ejecting, such as
a floppy disk. Execute the binary from that location (and therefore generate
a cached signature). Manually eject the media, and, on another machine,
overwrite the binary with a trojan. Reinsert the media into the target and
execute the trojan.

The authors’ attempts to perform this attack were hindered by the chang-
ing of FAT32 data when overwriting the binary on the secondary machine.
However, with careful manipulation of the FAT it is believed that an avenue
of attack exists.

3.3 Attacking the system

The simplest attack in this category involves replacing the public key and
rebooting the machine. Such an action is easy to perform on a machine
without adequate protection against unauthorised rebooting. The effect of
the attack is simply a denial-of-service, since no binaries will be allowed to
execute upon the reboot.

If the file system is protecting access to the public key, then it might
also be possible to obtain raw access to the disk, and change the key in that
fashion.

A more complex attack might involve creating a separate file system in
free space on the disk, and duplicating the system minus DigSig there. When
the relevant configuration files are changed, a reboot would see the machine
running exactly as before, but without any DigSig protection.

3.4 Combined attacks

This last classification encompasses any union of the three previous classes.
For example, an attacker might use the Samba attack to execute an attack
tool which overwrites the public key in kernel memory.

4 LESSONS LEARNT

It is clear that DigSig by itself is not adequate protection against illegal
binaries5. The fundamental problem is that it cannot verify the effect of

5While it may be easy to simply recommend a total security solution such as
SELinux [11], that is often overkill. Thus, the authors attempt to secure DigSig with-

Attack target Recommended protection

Kernel Use the seclvl module.
Integrity verifer Patch DigSig to prevent unloading, and whitelist

filesystems
System Utilise a secure booting platform, such as AEGIS

Table 2: Recommendations

programs, which is a stronger indication of nefarious activity. This being
said, when used in conjunction with software that provides a much more
controlled root environment, DigSig becomes harder to circumvent. One
possible method for achieving this is to use the seclvl module under Linux.
This kernel module enforces a read-only /dev/kmem, prevents raw I/O and
disables further module loading or unloading [12].

The vulnerabilities pointed out in DigSig, namely no unloading protection
and the problem with signature caches and network file systems, must also
be repaired. Protecting against unauthorised module unloading can take the
form of disabling the unload facility entirely by disallowing forced module un-
loading and not defining a module exit() function, or requiring a password
as used in seclvl [12].

The caching problem is more difficult to solve. By introducing caching,
security is weakened. Therefore if security is paramount, the authors rec-
ommend disabling signature caching. In the event that an administrator is
willing to live with a slight reduction in safety, DigSig should be re-written
to only cache on file systems known to be local, rather than blacklisting each
network file system as it comes along. This approach is more conservative,
but prevents Samba-style attacks.

Lastly, attacking the system cannot be prevented by DigSig, since it as-
sumes a sane state when its module is loaded. The AEGIS secure booting
platform and its variant [13, 14] can provide guarantees as to the correctness
of the system across restarts.

These recommendations are concisely displayed in Table 2.

5 CONCLUSION

The analysis of DigSig provided in this paper reveals that numerous attacks
exist, which could lead to the total compromise of the target. Attacks were
divided into four groups, depending on the component targeted. They were
the kernel, the integrity verifier, the system, and combinations of the previous

out resorting to such overbearing recommendations.

three attacks.
In addition to the noted theoretical attacks, a proof-of-concept was devel-

oped to alter the public key structure held in kernel space, which produced a
denial-of-service since no further binaries could be verified. It was also shown
how DigSig fails to identify all network file systems, leading to another attack
vector.

Concern over the justification for the caching mechanism was noted, and
recommendations made.

Finally, current work includes integrating these recommendations into the
DigSig code base, which will be submitted to the project authors shortly.

References

[1] grsecurity. http://www.grsecurity.net/.

[2] A Apvrille, D Gordon, S Hallyn, M Pourzandi, and V Roy. DigSig: Run-
time Authentication of Binaries at Kernel Level. In Proceedings of the
18th Large Installation System Administration Conference (LISA’04),
November 2004.

[3] L Catuogno and I Visconti. An Architecture for Kernel-Level Veri-
fication of Executables at Run Time. The Computer Journal, 47(5),
September 2004.

[4] Y Motara and B Irwin. In-Kernel Cryptographic Executable Verifica-
tion. In First IFIP WG 11.9 International Conference on Digital Foren-
sics, February 2005.

[5] DSI homepage. http://disec.sourceforge.net/.

[6] TIS Committee. Tool interface standard (TIS) executable and linking
format (ELF) specification, May 1995. Version 1.2.

[7] Run-Time Integrity Check of Executables.
http://libeccio.dia.unisa.it/wlf/.

[8] Debian bsign. http://packages.debian.org/unstable/admin/bsign.html.

[9] Samba - Opening Windows to a Wider World. http://www.samba.org.

[10] The Linux Kernel Archives. http://www.kernel.org/.

[11] Security-Enhanced Linux. http://www.nsa.gov/selinux/.

[12] M A Halcrow. Using the BSD Secure Levels LSM. Sys Admin, September
2004.

[13] W A Arbaugh, D J Farber, and J M Smith. A secure and reliable boot-
strap architecture. In SP ’97: Proceedings of the 1997 IEEE Symposium
on Security and Privacy, May 1997.

[14] N Itoi, W A Arbaugh, S J Pollack, and D M Reeves. Personal Secure
Booting. In ACISP ’01: Proceedings of the 6th Australasian Conference
on Information Security and Privacy, July 2001.

ML Slaviero, J Kroon and MS Olivier, "Attacking Signed Binaries," in HS Venter, JHP
Eloff, L Labuschagne and MM Eloff (eds), Proceedings of the Fifth Annual Information
Security South Africa Conference (ISSA2005), Sandton, South Africa, June/July 2005
(Published electronically)

©The authors

Source: http://mo.co.za

http://mo.co.za

